
FOR MASSACHUSETTS

LABORATORY FINSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

0MIT/LCS/TM-383

N

oA SPECIAL CASE OF
SECOND-ORDER STRICTNESS

ANALYSIS

DTIC
sELECTE

AG0 21989

Paul P. Wang

Approved go. p- bli: rePuelan

Distnbunon WitiWOd

February 1989

545 TECHNOLOGY SQUARE, CAMBRIDGE. MASSACHUSETTS 02139

893

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM-383 N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (If applicable) Office of Naval Research/Department of Navy
Science

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO IACCESSION NO.

11. TITLE (Include Security Classification)

A Special Case of Second-Order Strictness Analysis

12. PERSONAL AUTHOR(S)

Wang, Paul P.

13a. TYPE OF REPORT 13b TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

TechnicalI FROM TO 1989 February 19

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP strictness analysis, abstract interpretation, termination

properties

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
-. A function declaration is called strict in one of its formal parameters if, in all

calls to the function, either the actual corresponding parameter is evaluated, or the call
does not terminate. Approximating strictness analysis with abstract interpretation reduces
to the evaluation of recursive monotone Boolean functions. This evaluation problem is
complete in deterministic exponential time when the functions are declared with only base-

type formal parameters, and is deterministic super-exponential time hard when functions

are formal parameters. However, by coarsening the strictness analysis approximation to

be conjunctive, the first-order case can be completed in linear time. This paper will

show that the second-order case is NP-hard. ,

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

U UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. [DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Judy Little. Publications Coordinator (617) 253-5894

DO FORM 1473, 84 MAR 83 APR edition may be used until ewhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*ULi G.wmnt ftiritko Of9.s: 11151 41W

Unclassified

'NSPEr~t

A Special Case of Second-Order Strictness
c Acesiori F orAnalysis

NTIS CRAW

Paul P. Wangt UnnounCe

MIT Laboratory for Computer Science , ,

February 15, 1989

AvalalbilitY Codes

Avad anlldOf

Abstract Dist Special

A function declaration is called strict in one of its formal parame-
ters if, in all calls to the function, either the actual corresponding pa- |I1
rameter is evaluated, or the call does not terminate. Approximating
strictness analysis with abstract interpretation reduces to the evalua-
tion of recursive monotone Boolean functions. This evaluation prob-
lem is complete in deterministic exponential time when the functions
are declared with only base-type formal parameters, and is determin-
istic super-exponential time hard when functions are formal parame-
ters. However, by coarsening the strictness analysis approximation to
be conjunctive, the first-order case can be completed in linear time.
This paper will show that the second-order case is NP-hard.

*This memo is a report based on the author's Senior Thesis, submitted in June, 1988

to the Department of Electrical Engineering and Computer Science, under the supervision
of Prof. Albert R. Meyer.

fThis research was supported in part by a NSF Graduate Fellowship, NSF Grant 98477-
8511190-CCR, and DARPA Grant N00014-83-K-0125.

1 Introduction

Call-by-need evaluation strategies are used in the semantics of many mod-
ern programming languages. The advantage of a call-by-need interpreter,
as opposed to one using call-by-value strategies, is that normal-order eval-
uation (which corresponds to call-by-need) will terminate in many cases
where applicative-order evaluation (call-by-value) will not. However, in cases
where both strategic, 1il1 'crniinate, a call-by-value interpreter is generally
regarded as being more efficient due to the overhead associated with call-by-
need's "delayed" representation of objects.

Strictness analysis is a way of reducing such overhead. A function decla-
ration is called strict in one of its formal parameters if, in all calls to the func-
tion, either the corresponding actual parameter is evaluated or the call does
not terminate on the usual call-by-need style interpreter. Strictness analysis
determines the termination properties of the function being analyzed. The
results of such analysis have been used to optimize both parallel and sequen-
tial implementations of computer languages. If a function is strict in all its
formal parameters, then converting a call-by-need interpreter to use a call-
by-value strategy for evaluating the function's arguments will not change the
results of the program.

Recently, several papers have offered a method, namely abstract interpre-
tation, to infer an approximation of strictness of a function. More specifically,
all program results can be abstracted to the domain {I, T}, where -L E- T. I
is interpreted as "the program does not terminate". T is interpreted as "the
program might or might not terminate". The operators ni and U compute
the minimum and maximum of two arguments. All base-type constants are
mapped to T because they always term, .e. Also, strict functions such as
+ (integer addition) and A (Boolean and c _yration) are mapped to Axy.x ny
since they diverge if either argument diverges. Conditionals are mapped to
Apca.p F1 (c U a). See [6, 9, 1] for details.

The above domain {, T} with the operators F1 and U can also be viewed
as the Boolean values "true" and "false" with the Boolean operators "and"
and "'or".

Because many programs that are analyzed include recursion, this approx-
imation of strictness analysis reduces to the evaluation of recursive monotone
Boolean functions (RMBF's) [6, 9, 1]. Furthermore, since many program sub-
routines are allowed to be declared simultaneously and thus can "recursively

2

call each other", such an approximation of strictness analysis must reduce
to the evaluation of schemes representing sets of simultaneously declared
RMBF's. This paper will define such schemes (called recursive monotone
schemes or RMS's) as well as evaluation decidability problems for RMS's.

Recent work has shown that first-order strictness analysis approximation
using abstract interpretation (i.e. the functions to be analyzed are declared
with only base-type formal parameters) is complete in deterministic exponen-
tial time [3, 6]. Furthermore, higher-order strictness analysis approximation
(i.e. the functions to be analyzed are declared with functions as formal pa-
rameters) is deterministic "super-exponential" time hard [3, 12].

There have been many attempts to reduce the average time efficiency of
strictness analysis algorithms to more acceptable levels. One way to do this
is to develop algorithms which take less time "in the average case" [5, 2].
Another way is to modify strictness analysis by restricting the amount of
information that we can extract through abstract interpretation [11, 7]. This
paper discusses the complexity of strictness analysis when the analysis is
coarsened to treat the conditional as though it were an ordinary algebraic
function known only to be strict in its first argument (i.e. conditionals are
mapped to Apca.p). We refer to this as conjunctive strictness analysis.

Conjunctive strictness analysis reduces to the evaluation of recursive
monotone schemes whose syntactic representations do not contain any occur-
rences of "U" symbols. We refer to these as recursive conjunctive monotone
schemes (RCMS's). Conjunctive strictness analysis in the first-order case
turns out to be a linear-time problem with respect to the length of the an-
alyzed function's syntactic definition [7]. However, in the second-order case
(i.e. when first-order functions are formal parameters), conjunctive strictness
analysis is NP-hard.

This paper assumes that the reader is familiar with the elementary defi-
nitions of domain theory and computation theory.

2 Formal Definitions and Notation

In order to design a scheme that represents a set of simultaneously declared
recursive monotone Boolean functions, we first formalize the domain of ab-
stract interpretation (Section 2.1). We next introduce "types" a.id "terms"
to formalize our syntax (Section 2.2). After defining recursive monotone

3

schemes (RMS's) as representing sets of simultaneously declared RMBF's
(Section 2.3), we then assign meaning to these schemes (Section 2.4).

2.1 The Abstract Interpretation Domain

Definition 2.1 Let 2 be the domain {T, I} where I E- T. For partial orders
C, D, let C -+ D denote the inonotonc function space. Lt C x D denote the
cartesian product of C and D. Ve will use the standard "pointwise" partial
orders for the sets C x D and C --4 D. Refer to [10] for details.

We will denote the least element in the set C (if it exists) by -c- (Note
that -- 2 = 1 .)

2.2 Types and Terms

In order to define our recursive monotone schemes, we must first introduce
the concept of types. An object's type determines the "functional behavior"
of what the object intuitively represents.

Definition 2.2 The set of types derived over the base type b can be defined
by the following BNF grammar:

7 b I(rust) --

Tlist 7 71ist X T

Objects of type b represent the values {T, 11, the symbol x represents
cartesian product, and the symbol -+ represents monotone function space.

We define depth of types as:

Definition 2.3 The depth of type r is defined as follows:

* depth(b) = 0.

* depth((-rl x r2 X ... X rn) - n+) 1 + maxl<i<n+l[depth(7,)]

Let " r" denote a typed variable symbol of type 7. Let Ib and Tb be
constant symbols.

We will now introduce the concepts of preterms, type-statements, and
terms.

4I

Definition 2.4 Preterms, e, are given by the following BNF grammar:

e ::= a I _b i Tb Ie e I e fl e I e(el.,)

Avarlist. e
var x~ I x x I ' (r is a type)

varlist var I varlist var

elist - e I elist, e

Definition 2.5 Type-Statements are pairs e : r, where e is a pre-term and
-r is a type, defined inductively as follows:

* _b b and Tb : b are type-statements.

* x': T is a type-statement.

e: r, e 2 : r
el n e2 : r

el : r) e2 : r

el LJ e2 : T

e:(r x r2 x...xrT)---+r, e2 :r (1<i<n)
e(el, e2,,en):T

e:r

Ay y2 ... y'. e: (1 x -r2 x ... x rn) r

Definition 2.6 e is a term iff e : r is a type-statement for some T. A term
zs conjunctive iff it does not contain any occurrences of "Ui".

Note that r is unique if it exists.

Definition 2.7 The depth of a term, e, is defined inductively as follows:

e depth(Ib) = depth(Tb) = 0

* depth(xT) = depth(r)

5

" depth(el ne 2) = max(depth(ei),dcpth(e2))

" depth(ei U e2) = max(depth(ei),dcpth(e2))

* depth(co(cj, C2,. .. ,)) = niaxo<j<,j(depth(ej))

depth(Ayy' Y2 .y.. y'-.C) = iaxO<,<,,(I + depth(rT),dpth(c)),

whcrc e : 70.

2.3 Recursive Monotone Schemes

Definition 2.8 A recursive monotone scheme (RMS), S, is an n-tuple S
((x'.,ei), ("2 2), ... n (x ,e,)), where ej : ri (1 < i < n) and FV(ei) CXT, 2 .°

17 X22 1 .. .

An RMS S = ((XII ,e), (X2 2 ,e 2),. n en)) represents the simultane-
ous declaration of n recursive monotone Boolean functions. The set of typed
symbols {x ',... , x n} represent the declared functions, and each term ej
represents the declaration of the function x.

An example of an RMS would be the following:

Example 2.1 Consider the following declaration:

lctrec f(x,y) = xVg(h(xAy,y),h)
and g(x,y) = y(x,x) V x

and h(x,y) = xA(yVf(y,x))

The RMS S = ((xT,,el),(x 2 ,e 2),(X3,e 3)) will represent the above dec-
laration, where:

el:: Ay 6Y 1_[yb Uj X,2(X(yb F1 Y, b), X,)]
1 2 1 2 3 1 2 b

C3 ::= AyIy2.[.q [1 (y2 U Y1)
71 b b2 , b

T2 (b x(b2 -*b))-4b

3 b2 --* b 0]

6

Definition 2.9 Let the depth of the RMS S = ((x", ei),..., (x,], e,)) be:

depth(S) = max(dcpth(ej))
I<i<n

2.4 Interpretations

The purpose of types is to denote the "functional behavior" of what each
typed object is representing. Let [I denote a "type interpreter" that assigns
a set of functions to each type derivable under our definitions.

" bj = 2.

" Let r = (7-1 X r 2 x ... X 7n) -* r+j.

7T] = (Ik71! X J7r21 X ... X 17rJ - Tn+i *

We will now introduce the idea of assigning (semantic) values to (syntac-
tic) terms. Let an environment, p, represent a mapping from typed variables
x' to elements in [71. Then for any term e, where e : r, we can assign an
element in [I]] to e. Let Iep denote that element and be inductively defined
as follows:

•* - I and JT jp = T.

• IxIp = p(x T).

" Ie(e, e2 ,. .. , .)Ip = ICIp (Jel]P, e2],...,[fe.p).

" Iei l F1e 2 jP = e1]jp A le2]P.
where A is the pointwise glb operator.

* lei U e2]Jp = jejp V fJe2]Jp.

where V is the pointwise lub operator.

A(xf x 2 ... x7-).ejp = f E Ij[(r 1 x)]

where e : T and f(d,d 2 ,. . .,d,) = e]p[Z' F-+ d,] (1 < I < n, d E
1rij). p[x' - di] denotes the environment obtained from ' by letting
xtT be mapped to di.

7

Let RN.IS S' = ((x".) x~ ,)) We would like to define an en-
vironment ps that will assign to each typed symnbol x' (I < I < n) the
element of T-, . such that p(x[) (1 < i < n) are the least fixed points of the
following set of equlat ions:

XTZn

p, I ((C)g T 1T

*such that c 7-T anl 1'i (c 2 714 .,x" we can assign to (an
elem-ent in I[T]j by computing jEips. This is the value of the term t when
its "function calls" are interpreted as within the scopeC of the declarations
represented by S.

2.5 Problems

In this section. we will formalize some interesting decidability problems rel-
evant to RMNS's and strictness analysis.

Definition 2.10 Kth-Order RMIS Evaluation Problem (kE):

S E k E iff:

* --- ((xT ' ,6l). (x-, e,)) 1C ran RAtS with dent b(S) K5 k and 7r,= b.

* PS(4b) = T

Thieorem 2.1 The 1E evaltiation. problemn is comnplete in deterministhc ex-
ponential tiine [3, 6].

Thieorem 2.2 In gncral, as the depth of the RAIS increases, the complexity
of its evalutation dcidability problem grows as a cominosition of exponentials
f39, 12].

8

3 Improving the Running Time

The results of Theoreins 2.1 al 2.2 suggest that the act ual implementation
of strictness analysis is intractable clue to its deterministic exponential (and
in higher-order cases "super-exponential) time behavior. However, there are
ways of improving the running time. One approach is to devise algorithms
whose "-average case" behavior is significantly better than exponential (or"
super-exponential) time. Examples of such methods are Frontier Analysis
and Pending Analysis. See [5, 2] for details.

Another approach is to improve the running time of strictness analysis by
restricting the amount of information that can be extracted from abstract in-
terpretation. Abstract interpretation approximates conditionals by mapping
them to Apca.p l (c U a). However, by "*coarsening" abstract interpretation
to treat conditionals as though they were ordinary algebraic functions that
were known to be strict. only in the first argument (i.e. map conditionals to
Apca.p), we get a "'coarser" approximation of strictness analysis. However.
such a sacrifice in accuracy could yield a significant improvement in running
time. We refer to this version of strictness analysis as conjunctive strictness
analvsis.

Conjunctive strictness analysis reduces to the evaluation of R.MS's whose
syntactic definition does not contain any occurrences of the "U" symbol. We
refer to such a RMS as a recursirc conjunctive monotone scheme or RCMS.
We define the k-th Order RCNIS Evaluation Problem (kEC) as the special
case of the kE evaluation problem where the RMS evaluated is also an RCMS.

With minor corrections and revisions on the work by [7], it can be shown
that the 1EC decidability problem takes deterministic linear time. This im-
provement in running time (i.e. from deterministic exponential to linear time)
is not as impressive as it may seem, since the "coarsened" strictness analy-
sis significantly limits the amount of information that can be approximated.
However, it would be interesting to see if the 2EC decidability problem re-
mains tractable (i.e. remains in polynomial time), if it becomes exponential
in complexity, or perhaps stays super-exponential. The next section will show
that 2EC is, in fact, NP-hard.

9

4 Second-Order Conjunctive Strictness

Thie 2EC decidahilil v problem is NP hardl because there exists a. polynomial
time mnany-one reduction from the GSAI' (ecidability prob~lemf. 'We first
formnally define the GSAT prolbleni (Sect ion -4.1). Then we show a polvk-timle
mia nV-one reduict ion from CS Al to 2FIN' (Section 41.2).

4.1 GSAT

The (;SAT' decidability problem (thle sat isfiability prob~lemu for proposit ional
c-alcuilus) is acommi-ionly know, n NP)-comnplete problem. This paper will as-
sumne the reader's knowledge of lie syntax of propositional calcuilus formTulas
as well as the concepts of Boolean variables, truth-assignments, verifyving and
satisfiabilitv. For more details. p~lease refer to [P. 81.

Definition 4.1 GSAT Problem:

(GS.A T = JO(p P)2,. . p,,) 10 .is a pro posit ional calculus formiala i/ih Boo/can
rariables PI - P2.Pn--,) under the operators -,A, and V, such that 6 has a
satisfytig truth-assigninient}

We will define a truth-assignment. A, for the Boolean variables of 0 as
at mapping from the Boolean variables of 6 to the set f{1,O0}, where 1 andl 0
denote the Boolean values trite and false, respectively.

The GS \T (lecidability problem is NP-complete [4, 8].

4.2 GSAT and 2EC

In this section, xwe show a poly-tiune many-one redulct ion from GSAT to 2EC.
Before xwe (10 this w~e needl to present the followving Lemma:

Lemma 4. 1 For a ny n bit rector a = (in-1, ,-2,. ao), lfet Nit (a) b,- the
i iteger k (0 < k < 2 n) wtith the n-bit representation a. One can construct for
any]j (0 < < it 1- 1), a propositional calculus forinula 6n(an- , (1,2. (10)
such thmat:

bi'n(oj"(a)) =(bi'm(a) ± 1) mod 2 n

10

In fact, it is not hard to see that 07 need only have O(n) connectives and
can be constructed, given n and j, in time polynomial in n.

Example 4.1 The following formulas 03, 0', 0' are defined by:
00 1:=

03

S : (-'ao V--,a,) A (ao V a,)

23 ::= (-aoV-a, V- -a 2)A((aoAa,)Va 2) 0

We now introduce a restricted class of propositional calculus formulas,
called "negation-pushed" formulas. A negation-pushed formula is a proposi-
tional calculus formula, where all occurrences of the "-" symbol immediately
precede a Boolean variable. Note that every propositional calculus formula
can be transformed in linear time into a negation-pushed formula by repeated
use of DeMorgan's Law and the identity -- p = p.

Before we go any further, we should make the following comments on
notation to be used in this section:

* Let I denote the identity function of the domain 2.

e Let T denote the constant function T from 2 to 2.

We now define f, a mapping from propositional calculus formulas to
conjunctive terms of type b -- b. The difficulty in such a mapping is how to
"simulate" the Boolean or operator in conjunctive terms, since such terms
cannot contain any occurrences of the "U" symbol. The way around such
a difficulty is to represent Boolean values with first-order functions and the
Boolean or operator with the composition of first-order functions. The main
ideas of the mapping f can be summarized below:

" imulate" the Boolean value 0 with the first-order function I.

" rnulate" 1 with T.

* " -late" Boolean and with F1, i.e. pointwise glb.

11

* "simulate" Boolean or with the composition of two first-order functions.

The basis for these ideas are formalized in the following Lemma:

Lemma 4.2 Let a(l) = T, a(O) = I and a1,a 2 E {1,0}. Then:

a(a,) Fa(a 2) = a(al Aa 2)
a(al) o a(a2) = a(a, V a2)

where A and V represent Boolean and und or respectively, F1 represents point-
wise gib, and o represents composition.

With the above Lemma in mind, we now formally define the mapping f.
Given a propositional calculus formula (Pn-liPn-2,... ,po), define f(0) as
follows:

* FV(f(b)) C {y' b b_ Z b Yb Z b- Zn- IlYn.-2' n 2 ,0

* 1. Transform 0 to its negation-pushed form 0Y.

2. Transform 0' into a conjunctive term of type b -- b using a map-
ping g defined inductively as follows:

- g(p,) ::= y--b

- g(-ip) ::= z - b

- g(1 A q 2) ::= g(0) r g(0 2)

- g(01 V 02) ::= g(01) o g(02)
where, for clarity purposes, the above is an abbreviation for:
g(01 V 02)= Axb.[{g(¢,)}({g(02)}(Xb))]

f can obviously be computed in O(1€[) time.

Example 4.2 Consider the following propositional calculus formula 0:

S::=P0 V -(p A -'P2)

Then f(O) is defined by:

12b-b b-b
f(€) 0 :-yo - z 1 0 Y2 13

12

Before we make any formal conclusions about f, we must introduce the
concept of a well-formed environment.

Definition 4.2 A well-formed environment, p, is an environment such that,
Vi, p(y-) E { T, I} and:

pzb) = , if p(y-.b) = T
T, otherwise

We can now make the following conclusion about f:

Lemma 4.3 Let (Pn-,pn- ... ,po) be a Boolean formula and A be a truth-
assignment for the variables of 0. Then:

" If A verifies 0, then If(O)IPA = T

" If A does not verify 0, then If()PA = I

where PA is the well-formed environment defined by:
T, if A(pi) = 1

PA (Yi'-b) = I, otherwise

Proof of Lemma 4.3: Can be shown by induction on the length of 0 using
Lemma 4.2. 0

With the above Lemma, we can now show a poly-time many-one reduction
from GSAT to 2EC.

Theorem 4.1 GSAT is poly-time many-one reducible to 2EC.

Proof of Theorem 4.1: For any Boolean formula (pn-,Pn-2,...po)

define So = ((xbb)2n-(bb) eI), (xb, e2), (X4, e3)) to be an RCMS of depth
2, where:

e :: A y b - b z b- b y b -b b -b b - b b- 6*
el :m An-1 n-1 Yn-2zn-2 .. • o • O Zo

(b-b)2---(b-b)
{f(0) 0 x1 I
(f (On_-), f (_On_,), f (on2,• f (_On))

xb"b)2 n-(b-b)(Axb.xb , AxbTb ... , Axb.xb, Axb.--b)

e3 xb(b)

13

where the mapping f is previously defined, and the formulas Oj are defined
by Lemma 4.1.

By Lemma 4.1 and our semantics defined in Section 2.4:

-'J Ps,= if()IPo 0 if(0&1 0 f(0P2 0 ... 0 °f(O)jP2-- 0 XblPs,.

where o denotes composition and pk, k = bin((a_1 ,an_2, ... ,aO)), is the
well-formed environment defined by:

b T ifai= l (0<
PA(yi){ I otherwise (I 1

By Lemma 4.3, if 0 is satisfiable, then, for some k < 2', Iff()]Pk = T.
(For all other k < 2' , if(O)jPk = I.) This will mean that jxb-bps. = T.
This implies that xI1Jps, = T.

Also by Lemma 4.3, if 0 is not satisfiable, then, for all k < 2 , [f(0)]Pk
I. Since ps, must specify least-fixpoints, this means that Ixb-b]ps, = 22
(i.e. the constant function I from 2 to 2). This implies that x4]ps, = _.

Thus 0 E GSAT iff So E 2EC.
We have shown that f(O) takes o(1oq) time to compute. We have also

shown that each € takes polynomial time to compute and has O(n) con-
nectives. Thus the entire reduction from q to Sk can be done in polynomial
time. r-

We can now conclude that the 2EC evaluation problem is NP-hard.

Example 4.3 Consider the propositional calculus formula 0 used in Exam-
ple 4.2, where:

0 ::= po V -'(pi A -'P2)

By using the above reduction, we construct:

, = ((X~b-b) 6 (b-b) (b---b X
b

where So is an RCMS with depth 2 and:

14

b -b b-b b-b b-b b-b b-bAy 2 z 2 y1 z Yo Z0

{f ¢ x b'- b)6- (b- b)}
f(o) --- 3 -X3 3 -

(f3, f (_03), f (0) f (_03),f (0), f (_0))

(b:b)6 =(b) (AbXb X bTb AbX b . , AxbTb Axb.xb, Axb.Tb)

:: -b(1 b)

where mapping f is previously defined and formulas 3 are constructed in
Example 4.1. Specifically:

f () yb- b-b b-b

0 1 0 Y2

f(03) Zb-b

f (0 3) b - b z b) (~ b o 4 b
f(03) (Zb-b 0b-b) b-b b -b)

fly 1 fYo 0ub- Y1 ~ n~
f() : (yb- b n yb-6) 0 (zb-b n I -

\
b)

f(03 b-b b-b b-b) ((b-b y--*b y -
2(] : (Zo-oz 0 z ity 0y-b oyZ2b

(_0€3) :=(yb- by- by-b)O(b-b o6z-b) z - b)

5 Open Problems

In this paper, we have presented and analyzed the 2EC evaluation problem.
We have concluded that 2EC (and therefore second-order conjunctive strict-
ness analysis) is NP-hard. This result obviously leaves many open problems
left to examine. There are two very important open questions about 2EC
worth noting.

5.1 Deterministic Exponential Time Algorithm?
Since we have not presented an algorithm to solve 2EC, we cannot comment
on the "upper bound" time complexity of 2EC. Since 2E can be solved in
"double-exponential" time, we know 2EC can be, too. However, it seems
possible that the 2EC problem can be solved with a deterministic exponential
time algorithm.

15

5.2 Deterministic Exponential Hard?

The idea of using first-order functions to represent Boolean values suggests
that the 1E problem can be poly-time many-one reduced to 2EC. Specifically:

e WVe "simulate" the value I with the first-order function I.

* We "simulate" the value T with the first-order function T.

* We "simulate" the lub operator U with the composition of two func-
tions.

Informally, we illustrate the above idea with an example. Consider the
following depth 1 RMS S = ((x 3 -b, el),(x 2 b, e 2), (3, e3)), where:

e l :: = A y b y b y .b
1b 2-3b

[y1 U (yb n xb2 -b(yb, Yb))]

e 2 ::= Ayby .
b3 -, b b b[Y b U X i-bYiU Yb, Y2' b)

3 : x 2 b(Tb, _b)

We reduce S to the following depth 2 RCMS:

s '= (b<)3- (-),) (b)- (b-) ,), (X -b , (X ,4)

where:

Ay b-b b-b 'b-b

Y 12 Y3
o 0 X(b-b) 2 -(b-b) b.b b ..- b))

ef AY b-b b-b2 1 Y2
[Yb 0X(b-b)3-(b-',b) b-b b.-b Yb-b yb-b]

= b-b)-(b-b)(Axb Tb, X.Xb)

4 X3 - (1b)

It would seem that IXb3Ps = T f x Ips, = T.

16

Unfortunately, this straightforward reduction is incorrect. In some cases
of depth 1 RMS's, the resulting depth 2 RCMS S' will not "behave" properly.
Specifically, the problem lies within the specification of least-fixpoints in the
environment psi. Because of recursion, ps, sometimes map terms to the
constant I function from 2 to 2, when we would like the terms to be mapped
to either I or T. (In fact, in the proof of Theorem 4.1, we see that IX2 lips,
maps to the constant I function instead of 1, when € is not satisfiable.) This
will cause complications in the reduction.

For example, let S = ((xl 2 b, el), (x, e2)), where:

' b b r b2-~b)b b b b*
el : Ay 1Y2.[1 Y2,1 U Iy luxl- I, y Ylr'1y.2)]

b2- bi b)U
e2 : X -b(Tb Tb)

Then S' = ((x~bb) 2"- (b- b), z)(-.6 ;),(4, eb)) is the depth 2 RCMS
defined by the reduction, where:

e A y b---b b--b

b (b-b)2-(b-b), b-b 2) 2b- bX1 Yv2, Y1 l) o

x (b-b)2- (b-b) / b -b 6-b F b-b
I Y1l Y1 Y2)

e(: - xb-b)2"-(b'-b) (AXb.T b , X b . -T- b)

e 3 X2(I b2

It is clear that Ix b]ps = T. However, since ps, must specify least-
fixpoints:

jX b-b)2 -(b"b)jpS, 1(_.)_.2_2

This means that xb4jps , = I. Thus the above reduction does not hold.
It is the opinion of the author that such problems may be correctable,

but more work must be done in order to do so.

6 Acknowledgements

I would like to express my gratitude for Prof. Albert Meyer for his guidance
in supervising my research. I would also like to thank Jon Riecke for his help
in understanding "least fixpoints".

17

References

[1] G.I. Burn, C.L. Hankin, and S. Abramsky. The theory and practice of
strictness analysis for higher order functions. Technical Report DoC
85/6, Dept. of Computing, Imperial College of Science and Technology,
London SW7 2BZ, Great Britain, April 1985.

[21 C. Clack and S. L. Peyton Jones. Strictness analysis - a practical ap-
proach. In Functional Programming Languages and Computer Architec-
ture, Springer-Verlag LNCS 201, September 1985.

[3] Joost Engelfriet. Iterated pushdown automata and complexity classes.
In 15 th Symp. Theory of Computation, pages 365-373, ACM, 1983.

[4] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley Publishing Com-
pany, 1979.

[5] Paul Hudak and Jonathan Young. Finding fixpoints on function spaces.
December 1986. Unpublished manuscript, Yale University.

[6] Paul Iudak and Jonathan Young. Higher-order strictness analysis in
untyped lambda calculus. In 13th Symp. Principles of Programming
Languages, pages 97-109, ACM, 1986.

[7] Christos Kaklamanis. A Special Case of First-Order Strictness Analysis.
Bachelors Thesis, MIT, 1986.

[8] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Com-
putation. Prentice-Hall, Inc., 1981.

[9] A. Mycroft. Abstract Interpretation and Optimising Transformations for
Applicative Programs. PhD thesis, Univ. of Edinburgh, 1981.

[10] F. Nielson. Strictness analysis and denotational abstract interpretation.
Information and Control, 76:29-92, 1988.

[11] H. Seidl. Parameter-reduction of higher level grammars. Theoretical
Computer Science, 55:47-88, November 1987.

18

[12] R. Statman. The typed A-calculus is not elementary recursive. Theoret-
ical Computer Science, 9:73-81, 1979.

[13] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, 1977.

19

OFFICIAL DISTRIBUTION LIST

Director 2 copies

Information Processing Techniques Office

Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, VA 22209

Office of Naval Research 2 copies

800 North Quincy Street
Arlington, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies

Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies

Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies

Office of Computing Activities

1800 G. Street, N.W.

Washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy

Head, Research Department
Naval Weapons Center
China Lake, CA 93555

